Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolutionary optimization of the Verlet closure relation for the hard-sphere and square-well fluids (2205.07104v1)

Published 14 May 2022 in cond-mat.stat-mech, cond-mat.soft, and cs.NE

Abstract: The Ornstein-Zernike equation is solved for the hard-sphere and square-well fluids using a diverse selection of closure relations; the attraction range of the square-well is chosen to be $\lambda=1.5.$ In particular, for both fluids we mainly focus on the solution based on a three-parameter version of the Verlet closure relation [Mol. Phys. 42, 1291-1302 (1981)]. To find the free parameters of the latter, an unconstrained optimization problem is defined as a condition of thermodynamic consistency based on the compressibility and solved using Evolutionary Algorithms. For the hard-sphere fluid, the results show good agreement when compared with mean-field equations of state and accurate computer simulation results; at high densities, i.e., close to the freezing transition, expected (small) deviations are seen. In the case of the square-well fluid, a good agreement is observed at low and high densities when compared with event-driven molecular dynamics computer simulations. For intermediate densities, the explored closure relations vary in terms of accuracy. Our findings suggest that a modification of the optimization problem to include, for example, additional thermodynamic consistency criteria could improve the results for the type of fluids here explored.

Citations (2)

Summary

We haven't generated a summary for this paper yet.