Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Formal limitations of sample-wise information-theoretic generalization bounds (2205.06915v2)

Published 13 May 2022 in cs.LG and stat.ML

Abstract: Some of the tightest information-theoretic generalization bounds depend on the average information between the learned hypothesis and a single training example. However, these sample-wise bounds were derived only for expected generalization gap. We show that even for expected squared generalization gap no such sample-wise information-theoretic bounds exist. The same is true for PAC-Bayes and single-draw bounds. Remarkably, PAC-Bayes, single-draw and expected squared generalization gap bounds that depend on information in pairs of examples exist.

Citations (2)

Summary

We haven't generated a summary for this paper yet.