Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proving Unsolvability of Set Agreement Task with Epistemic mu-Calculus (2205.06452v1)

Published 13 May 2022 in cs.DC and cs.LO

Abstract: This paper shows, in the framework of the logical method,the unsolvability of $k$-set agreement task by devising a suitable formula of epistemic logic. The unsolvability of $k$-set agreement task is a well-known fact, which is a direct consequence of Sperner's lemma, a classic result from combinatorial topology. However, Sperner's lemma does not provide a good intuition for the unsolvability,hiding it behind the elegance of its combinatorial statement. The logical method has a merit that it can account for the reason of unsolvability by a concrete formula, but no epistemic formula for the general unsolvability result for $k$-set agreement task has been presented so far. We employ a variant of epistemic $\mu$-calculus, which extends the standard epistemic logic with distributed knowledge operators and propositional fixpoints, as the formal language of logic. With these extensions, we can provide an epistemic $\mu$-calculus formula that mentions higher-dimensional connectivity, which is essential in the original proof of Sperner's lemma, and thereby show that $k$-set agreement tasks are not solvable even by multi-round protocols. Furthermore, we also show that the same formula applies to establish the unsolvability for $k$-concurrency, a submodel of the 2-round protocol.

Citations (1)

Summary

We haven't generated a summary for this paper yet.