Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Adversarial Data Augmentation for Dysarthric and Elderly Speech Recognition (2205.06445v3)

Published 13 May 2022 in eess.AS and cs.AI

Abstract: Despite the rapid progress of automatic speech recognition (ASR) technologies targeting normal speech, accurate recognition of dysarthric and elderly speech remains highly challenging tasks to date. It is difficult to collect large quantities of such data for ASR system development due to the mobility issues often found among these users. To this end, data augmentation techniques play a vital role. In contrast to existing data augmentation techniques only modifying the speaking rate or overall shape of spectral contour, fine-grained spectro-temporal differences between dysarthric, elderly and normal speech are modelled using a novel set of speaker dependent (SD) generative adversarial networks (GAN) based data augmentation approaches in this paper. These flexibly allow both: a) temporal or speed perturbed normal speech spectra to be modified and closer to those of an impaired speaker when parallel speech data is available; and b) for non-parallel data, the SVD decomposed normal speech spectral basis features to be transformed into those of a target elderly speaker before being re-composed with the temporal bases to produce the augmented data for state-of-the-art TDNN and Conformer ASR system training. Experiments are conducted on four tasks: the English UASpeech and TORGO dysarthric speech corpora; the English DementiaBank Pitt and Cantonese JCCOCC MoCA elderly speech datasets. The proposed GAN based data augmentation approaches consistently outperform the baseline speed perturbation method by up to 0.91% and 3.0% absolute (9.61% and 6.4% relative) WER reduction on the TORGO and DementiaBank data respectively. Consistent performance improvements are retained after applying LHUC based speaker adaptation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Zengrui Jin (30 papers)
  2. Mengzhe Geng (42 papers)
  3. Jiajun Deng (75 papers)
  4. Tianzi Wang (37 papers)
  5. Shujie Hu (36 papers)
  6. Guinan Li (23 papers)
  7. Xunying Liu (92 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.