Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Framework for inferring empirical causal graphs from binary data to support multidimensional poverty analysis (2205.06131v3)

Published 12 May 2022 in stat.ME, cs.CY, cs.LG, and cs.SI

Abstract: Poverty is one of the fundamental issues that mankind faces. To solve poverty issues, one needs to know how severe the issue is. The Multidimensional Poverty Index (MPI) is a well-known approach that is used to measure a degree of poverty issues in a given area. To compute MPI, it requires information of MPI indicators, which are \textbf{binary variables} collecting by surveys, that represent different aspects of poverty such as lacking of education, health, living conditions, etc. Inferring impacts of MPI indicators on MPI index can be solved by using traditional regression methods. However, it is not obvious that whether solving one MPI indicator might resolve or cause more issues in other MPI indicators and there is no framework dedicating to infer empirical causal relations among MPI indicators. In this work, we propose a framework to infer causal relations on binary variables in poverty surveys. Our approach performed better than baseline methods in simulated datasets that we know ground truth as well as correctly found a causal relation in the Twin births dataset. In Thailand poverty survey dataset, the framework found a causal relation between smoking and alcohol drinking issues. We provide R CRAN package `BiCausality' that can be used in any binary variables beyond the poverty analysis context.

Citations (3)

Summary

We haven't generated a summary for this paper yet.