Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Lambek embedding and the category of product-preserving presheaves (2205.06068v1)

Published 12 May 2022 in math.CT and cs.LO

Abstract: It is well-known that the category of presheaf functors is complete and cocomplete, and that the Yoneda embedding into the presheaf category preserves products. However, the Yoneda embedding does not preserve coproducts. It is perhaps less well-known that if we restrict the codomain of the Yoneda embedding to the full subcategory of limit-preserving functors, then this embedding preserves colimits, while still enjoying most of the other useful properties of the Yoneda embedding. We call this modified embedding the Lambek embedding. The category of limit-preserving functors is known to be a reflective subcategory of the category of all functors, i.e., there is a left adjoint for the inclusion functor. In the literature, the existence of this left adjoint is often proved non-constructively, e.g., by an application of Freyd's adjoint functor theorem. In this paper, we provide an alternative, more constructive proof of this fact. We first explain the Lambek embedding and why it preserves coproducts. Then we review some concepts from multi-sorted algebras and observe that there is a one-to-one correspondence between product-preserving presheaves and certain multi-sorted term algebras. We provide a construction that freely turns any presheaf functor into a product-preserving one, hence giving an explicit definition of the left adjoint functor of the inclusion. Finally, we sketch how to extend our method to prove that the subcategory of limit-preserving functors is also reflective.

Citations (1)

Summary

We haven't generated a summary for this paper yet.