Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Extractor Stacking for Cross-domain Few-shot Learning (2205.05831v4)

Published 12 May 2022 in cs.CV and cs.LG

Abstract: Cross-domain few-shot learning (CDFSL) addresses learning problems where knowledge needs to be transferred from one or more source domains into an instance-scarce target domain with an explicitly different distribution. Recently published CDFSL methods generally construct a universal model that combines knowledge of multiple source domains into one feature extractor. This enables efficient inference but necessitates re-computation of the extractor whenever a new source domain is added. Some of these methods are also incompatible with heterogeneous source domain extractor architectures. We propose feature extractor stacking (FES), a new CDFSL method for combining information from a collection of extractors, that can utilise heterogeneous pretrained extractors out of the box and does not maintain a universal model that needs to be re-computed when its extractor collection is updated. We present the basic FES algorithm, which is inspired by the classic stacked generalisation approach, and also introduce two variants: convolutional FES (ConFES) and regularised FES (ReFES). Given a target-domain task, these algorithms fine-tune each extractor independently, use cross-validation to extract training data for stacked generalisation from the support set, and learn a simple linear stacking classifier from this data. We evaluate our FES methods on the well-known Meta-Dataset benchmark, targeting image classification with convolutional neural networks, and show that they can achieve state-of-the-art performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.