Concise tensors of minimal border rank (2205.05713v4)
Abstract: We determine defining equations for the set of concise tensors of minimal border rank in $Cm\otimes Cm\otimes Cm$ when $m=5$ and the set of concise minimal border rank $1_*$-generic tensors when $m=5,6$. We solve this classical problem in algebraic complexity theory with the aid of two recent developments: the 111-equations defined by Buczy\'{n}ska-Buczy\'{n}ski and results of Jelisiejew-\v{S}ivic on the variety of commuting matrices. We introduce a new algebraic invariant of a concise tensor, its 111-algebra, and exploit it to give a strengthening of Friedland's normal form for $1$-degenerate tensors satisfying Strassen's equations. We use the 111-algebra to characterize wild minimal border rank tensors and classify them in $C5\otimes C5\otimes C5$.