Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Quantitative Bound For Szemerédi's Theorem for a Complexity One Polynomial Progression over $\mathbb{Z}/N\mathbb{Z}$ (2205.05540v4)

Published 11 May 2022 in math.NT, math.CA, and math.CO

Abstract: Let $N$ be a large prime and $P, Q \in \mathbb{Z}[x]$ two linearly independent polynomials with $P(0) = Q(0) = 0$. We show that if a subset $A$ of $\mathbb{Z}/N\mathbb{Z}$ lacks a progression of the form $(x, x + P(y), x + Q(y), x + P(y) + Q(y))$, then $$|A| \le O\left(\frac{N}{\log_{(O(1))}(N)}\right)$$ where $\log_{C}(N)$ is an iterated logarithm of order $C$ (e.g., $\log_{2}(N) = \log\log(N)$). To establish this bound, we adapt Peluse's (2018) degree lowering argument to the quadratic Fourier analysis setting to obtain quantitative bounds on the true complexity of the above progression. Our method also shows that for a large class of polynomial progressions, if one can establish polynomial-type bounds on the true complexity of those progressions, then one can establish polynomial-type bounds on Szemer\'edi's theorem for that type of polynomial progression.

Summary

We haven't generated a summary for this paper yet.