Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Building for Tomorrow: Assessing the Temporal Persistence of Text Classifiers (2205.05435v6)

Published 11 May 2022 in cs.CL and cs.AI

Abstract: Performance of text classification models tends to drop over time due to changes in data, which limits the lifetime of a pretrained model. Therefore an ability to predict a model's ability to persist over time can help design models that can be effectively used over a longer period of time. In this paper, we provide a thorough discussion into the problem, establish an evaluation setup for the task. We look at this problem from a practical perspective by assessing the ability of a wide range of LLMs and classification algorithms to persist over time, as well as how dataset characteristics can help predict the temporal stability of different models. We perform longitudinal classification experiments on three datasets spanning between 6 and 19 years, and involving diverse tasks and types of data. By splitting the longitudinal datasets into years, we perform a comprehensive set of experiments by training and testing across data that are different numbers of years apart from each other, both in the past and in the future. This enables a gradual investigation into the impact of the temporal gap between training and test sets on the classification performance, as well as measuring the extent of the persistence over time.

Citations (23)

Summary

We haven't generated a summary for this paper yet.