Papers
Topics
Authors
Recent
2000 character limit reached

RG flow between $W_3$ minimal models by perturbation and domain wall approaches

Published 10 May 2022 in hep-th | (2205.05091v2)

Abstract: We explore the RG flow between neighboring minimal CFT models with $W_3$ symmetry. After computing several classes of OPE structure constants we were able to find the matrices of anomalous dimensions for three classes of RG invariant sets of local fields. Each set from the first class consists of a single primary field, the second one of three primaries, while sets in the third class contain six primary and four secondary fields. We diagonalize their matrices of anomalous dimensions and establish the explicit maps between UV and IR fields (mixing coefficients). While investigating the three point functions of secondary fields we have encountered an interesting phenomenon, namely violation of holomorphic anti-holomorphic factorization property, something that does not happen in ordinary minimal models with Virasoro symmetry solely. Furthermore, the perturbation under consideration preserves a non-trivial subgroup of $W$ transformations. We have derived the corresponding conserved current explicitly. We used this current to define a notion of anomalous $W$-weights in perturbed theory: the analog for matrix of anomalous dimensions. For RG invariant sets with primary fields only we have derived a formula for this quantity in terms of structure constants. This allowed us to compute anomalous $W$-weights for the first and second classes explicitly. The same RG flow we investigate also with the domain wall approach for the second RG invariant class and find complete agreement with the perturbative approach.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.