Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RG flow between $W_3$ minimal models by perturbation and domain wall approaches (2205.05091v2)

Published 10 May 2022 in hep-th

Abstract: We explore the RG flow between neighboring minimal CFT models with $W_3$ symmetry. After computing several classes of OPE structure constants we were able to find the matrices of anomalous dimensions for three classes of RG invariant sets of local fields. Each set from the first class consists of a single primary field, the second one of three primaries, while sets in the third class contain six primary and four secondary fields. We diagonalize their matrices of anomalous dimensions and establish the explicit maps between UV and IR fields (mixing coefficients). While investigating the three point functions of secondary fields we have encountered an interesting phenomenon, namely violation of holomorphic anti-holomorphic factorization property, something that does not happen in ordinary minimal models with Virasoro symmetry solely. Furthermore, the perturbation under consideration preserves a non-trivial subgroup of $W$ transformations. We have derived the corresponding conserved current explicitly. We used this current to define a notion of anomalous $W$-weights in perturbed theory: the analog for matrix of anomalous dimensions. For RG invariant sets with primary fields only we have derived a formula for this quantity in terms of structure constants. This allowed us to compute anomalous $W$-weights for the first and second classes explicitly. The same RG flow we investigate also with the domain wall approach for the second RG invariant class and find complete agreement with the perturbative approach.

Summary

We haven't generated a summary for this paper yet.