Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Learning-based Schemes for Singularly Perturbed Convection-Diffusion Problems

Published 10 May 2022 in math.NA and cs.NA | (2205.04779v1)

Abstract: Deep learning-based numerical schemes such as Physically Informed Neural Networks (PINNs) have recently emerged as an alternative to classical numerical schemes for solving Partial Differential Equations (PDEs). They are very appealing at first sight because implementing vanilla versions of PINNs based on strong residual forms is easy, and neural networks offer very high approximation capabilities. However, when the PDE solutions are low regular, an expert insight is required to build deep learning formulations that do not incur in variational crimes. Optimization solvers are also significantly challenged, and can potentially spoil the final quality of the approximated solution due to the convergence to bad local minima, and bad generalization capabilities. In this paper, we present an exhaustive numerical study of the merits and limitations of these schemes when solutions exhibit low-regularity, and compare performance with respect to more benign cases when solutions are very smooth. As a support for our study, we consider singularly perturbed convection-diffusion problems where the regularity of solutions typically degrades as certain multiscale parameters go to zero.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.