Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A lattice theoretical interpretation of generalized deep holes of the Leech lattice vertex operator algebra (2205.04681v1)

Published 10 May 2022 in math.QA

Abstract: We give a lattice theoretical interpretation of generalized deep holes of the Leech lattice VOA $V_\Lambda$. We show that a generalized deep hole defines a "true" automorphism invariant deep hole of the Leech lattice. We also show that there is a correspondence between the set of isomorphism classes of holomorphic VOA $V$ of central charge $24$ having non-abelian $V_1$ and the set of equivalence classes of pairs $(\tau, \tilde{\beta})$ satisfying certain conditions, where $\tau\in Co_0$ and $\tilde{\beta}$ is a $\tau$-invariant deep hole of squared length $2$. It provides a new combinatorial approach towards the classification of holomorphic VOAs of central charge $24$. In particular, we give an explanation for an observation of G. H\"ohn, which relates the weight one Lie algebras of holomorphic VOAs of central charge $24$ to certain codewords associated with the glue codes of Niemeier lattices.

Summary

We haven't generated a summary for this paper yet.