Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy conserving and well-balanced discontinuous Galerkin methods for the Euler-Poisson equations in spherical symmetry (2205.04448v1)

Published 9 May 2022 in math.NA, astro-ph.SR, and cs.NA

Abstract: This paper presents high-order Runge-Kutta (RK) discontinuous Galerkin methods for the Euler-Poisson equations in spherical symmetry. The scheme can preserve a general polytropic equilibrium state and achieve total energy conservation up to machine precision with carefully designed spatial and temporal discretizations. To achieve the well-balanced property, the numerical solutions are decomposed into equilibrium and fluctuation components which are treated differently in the source term approximation. One non-trivial challenge encountered in the procedure is the complexity of the equilibrium state, which is governed by the Lane-Emden equation. For total energy conservation, we present second- and third-order RK time discretization, where different source term approximations are introduced in each stage of the RK method to ensure the conservation of total energy. A carefully designed slope limiter for spherical symmetry is also introduced to eliminate oscillations near discontinuities while maintaining the well-balanced and total-energy-conserving properties. Extensive numerical examples -- including a toy model of stellar core-collapse with a phenomenological equation of state that results in core-bounce and shock formation -- are provided to demonstrate the desired properties of the proposed methods, including the well-balanced property, high-order accuracy, shock capturing capability, and total energy conservation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.