Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Neural Networks for Propositional Model Counting (2205.04423v1)

Published 9 May 2022 in cs.AI and cs.LG

Abstract: Graph Neural Networks (GNNs) have been recently leveraged to solve several logical reasoning tasks. Nevertheless, counting problems such as propositional model counting (#SAT) are still mostly approached with traditional solvers. Here we tackle this gap by presenting an architecture based on the GNN framework for belief propagation (BP) of Kuch et al., extended with self-attentive GNN and trained to approximately solve the #SAT problem. We ran a thorough experimental investigation, showing that our model, trained on a small set of random Boolean formulae, is able to scale effectively to much larger problem sizes, with comparable or better performances of state of the art approximate solvers. Moreover, we show that it can be efficiently fine-tuned to provide good generalization results on different formulae distributions, such as those coming from SAT-encoded combinatorial problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.