Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TransEM:Residual Swin-Transformer based regularized PET image reconstruction (2205.04204v2)

Published 9 May 2022 in eess.IV

Abstract: Positron emission tomography(PET) image reconstruction is an ill-posed inverse problem and suffers from high level of noise due to limited counts received. Recently deep neural networks especially convolutional neural networks(CNN) have been successfully applied to PET image reconstruction. However, the local characteristics of the convolution operator potentially limit the image quality obtained by current CNN-based PET image reconstruction methods. In this paper, we propose a residual swin-transformer based regularizer(RSTR) to incorporate regularization into the iterative reconstruction framework. Specifically, a convolution layer is firstly adopted to extract shallow features, then the deep feature extraction is accomplished by the swin-transformer layer. At last, both deep and shallow features are fused with a residual operation and another convolution layer. Validations on the realistic 3D brain simulated low-count data show that our proposed method outperforms the state-of-the-art methods in both qualitative and quantitative measures.

Citations (16)

Summary

We haven't generated a summary for this paper yet.