2000 character limit reached
Decay estimates for a class of wave equations on the Heisenberg group (2205.04106v2)
Published 9 May 2022 in math.AP and math.FA
Abstract: In this paper, we study a class of dispersive wave equations on the Heisenberg group $Hn$. Based on the group Fourier transform on $Hn$, the properties of the Laguerre functions and the stationary phase lemma, we establish the decay estimates for a class of dispersive semigroup on $Hn$ given by $e{it\phi(\mathcal{L})}$, where $\phi: \mathbb{R}+ \to \mathbb{R}$ is smooth, and $\mathcal{L}$ is the sub-Laplacian on $Hn$. Finally, using the duality arguments, we apply the obtained results to derive the Strichartz inequalities for the solutions of some specific equations, such as the fractional Schr\"{o}dinger equation, the fractional wave equation and the fourth-order Schr\"{o}dinger equation.