Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preservation of High Frequency Content for Deep Learning-Based Medical Image Classification (2205.03898v1)

Published 8 May 2022 in eess.IV and cs.CV

Abstract: Chest radiographs are used for the diagnosis of multiple critical illnesses (e.g., Pneumonia, heart failure, lung cancer), for this reason, systems for the automatic or semi-automatic analysis of these data are of particular interest. An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists, ultimately allowing for better medical care of lung-, heart- and chest-related conditions. We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information that is typically lost in the down-sampling of high-resolution radiographs, a common step in computer-aided diagnostic pipelines. Our proposed approach requires only slight modifications to the input of existing state-of-the-art Convolutional Neural Networks (CNNs), making it easily applicable to existing image classification frameworks. We show that the extra high-frequency components offered by our method increased the classification performance of several CNNs in benchmarks employing the NIH Chest-8 and ImageNet-2017 datasets. Based on our results we hypothesize that providing frequency-specific coefficients allows the CNNs to specialize in the identification of structures that are particular to a frequency band, ultimately increasing classification performance, without an increase in computational load. The implementation of our work is available at github.com/DeclanMcIntosh/LeGallCuda.

Citations (6)

Summary

We haven't generated a summary for this paper yet.