Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Stochastic Optimization with Inherent Privacy Protection (2205.03884v1)

Published 8 May 2022 in cs.LG, cs.SY, eess.SY, and math.OC

Abstract: Decentralized stochastic optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing. Since involved data usually contain sensitive information like user locations, healthcare records and financial transactions, privacy protection has become an increasingly pressing need in the implementation of decentralized stochastic optimization algorithms. In this paper, we propose a decentralized stochastic gradient descent algorithm which is embedded with inherent privacy protection for every participating agent against other participating agents and external eavesdroppers. This proposed algorithm builds in a dynamics based gradient-obfuscation mechanism to enable privacy protection without compromising optimization accuracy, which is in significant difference from differential-privacy based privacy solutions for decentralized optimization that have to trade optimization accuracy for privacy. The dynamics based privacy approach is encryption-free, and hence avoids incurring heavy communication or computation overhead, which is a common problem with encryption based privacy solutions for decentralized stochastic optimization. Besides rigorously characterizing the convergence performance of the proposed decentralized stochastic gradient descent algorithm under both convex objective functions and non-convex objective functions, we also provide rigorous information-theoretic analysis of its strength of privacy protection. Simulation results for a distributed estimation problem as well as numerical experiments for decentralized learning on a benchmark machine learning dataset confirm the effectiveness of the proposed approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yongqiang Wang (92 papers)
  2. H. Vincent Poor (884 papers)
Citations (30)

Summary

We haven't generated a summary for this paper yet.