Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gravitational waveforms from the inspiral of compact binaries in the Brans-Dicke theory in an expanding Universe (2205.03704v2)

Published 7 May 2022 in gr-qc and astro-ph.CO

Abstract: In modified gravity theories, such as the Brans-Dicke theory, the background evolution of the Universe and the perturbation around it are different from that in general relativity. Therefore, the gravitational waveforms used to study standard sirens in these theories should be modified. The modifications of the waveforms can be classified into two categories: wave generation effects and wave propagation effects. Hitherto, the waveforms used to study standard sirens in the modified gravity theories incorporate only the wave propagation effects and ignore the wave generation effects; while the waveforms focusing on the wave generation effects, such as the post-Newtonian waveforms, do not incorporate the wave propagation effects and cannot be directly applied to the sources with non-negligible redshifts in the study of standard sirens. In this work, we construct the consistent waveforms for standard sirens in the Brans-Dicke theory. The wave generation effects include the emission of the scalar breathing polarization $h_b$ and the corrections to the tensor polarizations $h_+$ and $h_\times$; the wave propagation effect is the modification of the luminosity distance for the gravitational waveforms. Using the consistent waveforms, we analyze the parameter estimation biases due to the ignorance of the wave generation effects. Considering the observations by the Einstein Telescope, we find that the ratio of the theoretical bias to the statistical error of the redshifted chirp mass is two orders of magnitude larger than that of the source distance. For black hole-neutron star binary systems like GW191219, the theoretical bias of the redshifted chirp mass can be several times larger than the statistical error.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (82)
  1. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005).
  2. A. G. Riess, W. Yuan, L. M. Macri, D. Scolnic, D. Brout, S. Casertano, D. O. Jones, Y. Murakami, L. Breuval, T. G. Brink, A. V. Filippenko, S. Hoffmann, S. W. Jha, W. D. Kenworthy, J. Mackenty, B. E. Stahl,  and W. Zheng, “A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team,”  arXiv:2112.04510 [astro-ph.CO] .
  3. B. F. Schutz, “Determining the Hubble constant from gravitational wave observations,” Nature 323, 310–311 (1986).
  4. D. E. Holz and S. A. Hughes, “Using gravitational-wave standard sirens,” The Astrophysical Journal 629, 15–22 (2005).
  5. B. P. Abbott et al. (The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration, The MASTER Collaboration), “A gravitational-wave standard siren measurement of the Hubble constant,” Nature 551, 85–88 (2017).
  6. H.-Y. Chen, “Systematic uncertainty of standard sirens from the viewing angle of binary neutron star inspirals,” Phys. Rev. Lett. 125, 201301 (2020).
  7. W. Zhao, “ Gravitational-wave standard siren and cosmology (in Chinese),” Sci Sin-Phys Mech Astron 48, 079805 (2018).
  8. E. D. Valentino et al., “In the realm of the Hubble tension—a review of solutions,” Classical and Quantum Gravity 38, 153001 (2021).
  9. J. Solà Peracaula, A. Gómez-Valent, J. de Cruz Pérez,  and C. Moreno-Pulido, “Brans-Dicke Gravity with a Cosmological Constant Smoothes Out ΛΛ\Lambdaroman_ΛCDM Tensions,” The Astrophysical Journal Letters 886, L6 (2019).
  10. C. Brans and R. H. Dicke, “Mach’s Principle and a Relativistic Theory of Gravitation,” Phys. Rev. 124, 925–935 (1961).
  11. R. H. Dicke, “New research on old gravitation,” Science 129, 621–624 (1959).
  12. L.-M. Cao, L.-Y. Li,  and L.-B. Wu, “Bound on the rate of Bondi mass loss,” Phys. Rev. D 104, 124017 (2021).
  13. S. Hou and Z.-H. Zhu, “Gravitational memory effects and Bondi-Metzner-Sachs symmetries in scalar-tensor theories,” Journal of High Energy Physics 01, 83 (2021).
  14. S. Tahura, D. A. Nichols,  and K. Yagi, “Gravitational-wave memory effects in Brans-Dicke theory: Waveforms and effects in the post-Newtonian approximation,” Phys. Rev. D 104, 104010 (2021).
  15. Z. Cao, P. Galaviz,  and L.-F. Li, “Binary black hole mergers in f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) theory,” Phys. Rev. D 87, 104029 (2013).
  16. A. Maselli et al., ‘‘Detecting fundamental fields with LISA observations of gravitational waves from extreme mass-ratio inspirals,” Nature Astronomy 6, 464–470 (2022).
  17. T. Liu, W. Zhao,  and Y. Wang, “Gravitational waveforms from the quasicircular inspiral of compact binaries in massive brans-dicke theory,” Phys. Rev. D 102, 124035 (2020).
  18. Y. Higashino and S. Tsujikawa, “Inspiral gravitational waveforms from compact binary systems in Horndeski gravity,”  arXiv:2209.13749 [gr-qc] .
  19. T. A. Oliynyk, “Post-Newtonian Expansions for Perfect Fluid,” Communications in Mathematical Physics 288, 847 (2009).
  20. E. Poisson and C. M. Will, Gravity (Cambridge University Press, 2014).
  21. C. M. Will, “Testing scalar-tensor gravity with gravitational-wave observations of inspiralling compact binaries,” Phys. Rev. D 50, 6058–6067 (1994).
  22. S. Mirshekari and C. M. Will, “Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order,” Phys. Rev. D 87, 084070 (2013).
  23. R. N. Lang, “Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order,” Phys. Rev. D 89, 084014 (2014).
  24. R. N. Lang, ‘‘Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux,” Phys. Rev. D 91, 084027 (2015).
  25. N. Sennett, S. Marsat,  and A. Buonanno, “Gravitational waveforms in scalar-tensor gravity at 2PN relative order,” Phys. Rev. D 94, 084003 (2016).
  26. L. Bernard, L. Blanchet,  and D. Trestini, “Gravitational waves in scalar-tensor theory to one-and-a-half post-Newtonian order,”  arXiv:2201.10924 [gr-qc] .
  27. S. Ma and N. Yunes, “Improved constraints on modified gravity with eccentric gravitational waves,” Phys. Rev. D 100, 124032 (2019).
  28. S. M. Kopeikin, “Post-Newtonian Lagrangian of an N𝑁Nitalic_N-body system with arbitrary mass and spin multipoles,” Phys. Rev. D 102, 024053 (2020).
  29. P. Brax, A.-C. Davis, S. Melville,  and L. K. Wong, “Spin-orbit effects for compact binaries in scalar-tensor gravity,” Journal of Cosmology and Astroparticle Physics 2021, 075 (2021).
  30. L. Bernard, “Dipolar tidal effects in scalar-tensor theories,” Phys. Rev. D 101, 021501(R) (2020).
  31. E. Barausse, C. Palenzuela, M. Ponce,  and L. Lehner, “Neutron-star mergers in scalar-tensor theories of gravity,” Phys. Rev. D 87, 081506(R) (2013).
  32. N. Yunes, P. Pani,  and V. Cardoso, “Gravitational waves from quasicircular extreme mass-ratio inspirals as probes of scalar-tensor theories,” Phys. Rev. D 85, 102003 (2012).
  33. T. Clifton, P. G. Ferreira, A. Padilla,  and C. Skordis, “Modified gravity and cosmology,” Physics Reports 513, 1 – 189 (2012).
  34. L. Barack et al., “Black holes, gravitational waves and fundamental physics: a roadmap,” Classical and Quantum Gravity 36, 143001 (2019).
  35. S. Tahura and K. Yagi, “Parametrized post-Einsteinian gravitational waveforms in various modified theories of gravity,” Phys. Rev. D 98, 084042 (2018).
  36. S. Tahura and K. Yagi, “Erratum: Parametrized post-Einsteinian gravitational waveforms in various modified theories of gravity [Phys. Rev. D 98, 084042 (2018)],” Phys. Rev. D 101, 109902(E) (2020).
  37. A. Nishizawa, “Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation,” Phys. Rev. D 97, 104037 (2018).
  38. S. Arai and A. Nishizawa, ‘‘Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory,” Phys. Rev. D 97, 104038 (2018).
  39. A. Nishizawa and S. Arai, “Generalized framework for testing gravity with gravitational-wave propagation. III. Future prospect,” Phys. Rev. D 99, 104038 (2019).
  40. W. Zhao, T. Zhu, J. Qiao,  and A. Wang, “Waveform of gravitational waves in the general parity-violating gravities,” Phys. Rev. D 101, 024002 (2020).
  41. M. Lagos, M. Fishbach, P. Landry,  and D. E. Holz, “Standard sirens with a running Planck mass,” Phys. Rev. D 99, 083504 (2019).
  42. C. Dalang, P. Fleury,  and L. Lombriser, “Horndeski gravity and standard sirens,” Phys. Rev. D 102, 044036 (2020).
  43. C. Dalang, P. Fleury,  and L. Lombriser, “Scalar and tensor gravitational waves,” Phys. Rev. D 103, 064075 (2021).
  44. T. Baker and I. Harrison, “Constraining scalar-tensor modified gravity with gravitational waves and large scale structure surveys,” Journal of Cosmology and Astroparticle Physics 2021, 068 (2021).
  45. E. Belgacem, Y. Dirian, S. Foffa, E. J. Howell, M. Maggiore,  and T. Regimbau, “Cosmology and dark energy from joint gravitational wave-GRB observations,” Journal of Cosmology and Astroparticle Physics 2019, 015 (2019a).
  46. C. Dalang and L. Lombriser, “Limitations on standard sirens tests of gravity from screening,” Journal of Cosmology and Astroparticle Physics 2019, 013 (2019).
  47. E. Belgacem, Y. Dirian, S. Foffa,  and M. Maggiore, “Modified gravitational-wave propagation and standard sirens,” Phys. Rev. D 98, 023510 (2018a).
  48. R. D’Agostino and R. C. Nunes, “Probing observational bounds on scalar-tensor theories from standard sirens,” Phys. Rev. D 100, 044041 (2019).
  49. W. J. Wolf and M. Lagos, “Standard sirens as a novel probe of dark energy,” Phys. Rev. Lett. 124, 061101 (2020).
  50. E. Belgacem, G. Calcagni, M. Crisostomi, C. Dalang, Y. Dirian, J. M. Ezquiaga, M. Fasiello, S. Foffa, A. Ganz, J. García-Bellido, L. Lombriser, M. Maggiore, N. Tamanini, G. Tasinato, M. Zumalacárregui, E. Barausse, N. Bartolo, D. Bertacca, A. Klein, S. Matarrese,  and M. Sakellariadou, “Testing modified gravity at cosmological distances with LISA standard sirens,” Journal of Cosmology and Astroparticle Physics 2019, 024 (2019b).
  51. I. S. Matos, M. O. Calvão,  and I. Waga, “Gravitational wave propagation in f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) models: New parametrizations and observational constraints,” Phys. Rev. D 103, 104059 (2021).
  52. L. Amendola, I. Sawicki, M. Kunz,  and I. D. Saltas, “Direct detection of gravitational waves can measure the time variation of the Planck mass,” Journal of Cosmology and Astroparticle Physics 2018, 030 (2018).
  53. K. S. Thorne, “Gravitational radiation,” in Three Hundred Years of Gravitation, edited by S. Hawking and W. Israel (Cambridge University Press, Cambridge, 1987) pp. 330–458.
  54. K. S. Thorne, “Multipole expansions of gravitational radiation,” Rev. Mod. Phys. 52, 299–339 (1980).
  55. R. A. Isaacson, “Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics,” Phys. Rev. 166, 1263–1271 (1968a).
  56. R. A. Isaacson, “Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor,” Phys. Rev. 166, 1272–1280 (1968b).
  57. K.-i. Kubota, S. Arai,  and S. Mukohyama, “Propagation of scalar and tensor gravitational waves in Horndeski theory,”  arXiv:2209.00795 [gr-qc] .
  58. A. Garoffolo, G. Tasinato, C. Carbone, D. Bertacca,  and S. Matarrese, “Gravitational waves and geometrical optics in scalar-tensor theories,” Journal of Cosmology and Astroparticle Physics 2020, 040–040 (2020).
  59. E. Belgacem, Y. Dirian, S. Foffa,  and M. Maggiore, “Gravitational-wave luminosity distance in modified gravity theories,” Phys. Rev. D 97, 104066 (2018b).
  60. M. Punturo et al., “The Einstein Telescope: a third-generation gravitational wave observatory,” Classical and Quantum Gravity 27, 194002 (2010).
  61. J. Alsing, E. Berti, C. M. Will,  and H. Zaglauer, “Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity,” Phys. Rev. D 85, 064041 (2012).
  62. T. Damour and G. Esposito-Farèse, “Nonperturbative strong-field effects in tensor-scalar theories of gravitation,” Phys. Rev. Lett. 70, 2220–2223 (1993).
  63. D. M. Eardley, “Observable effects of a scalar gravitational field in a binary pulsar,” Astrophys. J. Lett 196, L59–L62 (1975).
  64. H. W. Zaglauer, “Neutron Stars and Gravitational Scalars,” The Astrophysical Journal 393, 685 (1992).
  65. K. S. Thorne, “The Theory of Gravitational Radiation: An Introductory Review,” in Gravitational Radiation, edited by N. Dereulle and T. Piran (North Holland, Amsterdam, 1983) pp. 1–57.
  66. J. Fier, X. Fang, B. Li, S. Mukohyama, A. Wang,  and T. Zhu, “Gravitational wave cosmology: High frequency approximation,” Phys. Rev. D 103, 123021 (2021).
  67. C. Bonvin, C. Caprini, R. Sturani,  and N. Tamanini, “Effect of matter structure on the gravitational waveform,” Phys. Rev. D 95, 044029 (2017).
  68. K. S. Thorne and R. D. Blandford, “Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics,”  (Princeton University Press, Princeton, New Jersey, 2017) pp. 1335–1341.
  69. E. Poisson, A relativist’s toolkit : the mathematics of black-hole mechanics (Cambridge University Press, Cambridge, 2004).
  70. M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments (Oxford university press, 2008).
  71. T. Liu, X. Zhang, W. Zhao, K. Lin, C. Zhang, S. Zhang, X. Zhao, T. Zhu,  and A. Wang, “Waveforms of compact binary inspiral gravitational radiation in screened modified gravity,” Phys. Rev. D 98, 083023 (2018).
  72. X. Zhang, J. Yu, T. Liu, W. Zhao,  and A. Wang, “Testing Brans-Dicke gravity using the Einstein telescope,” Phys. Rev. D 95, 124008 (2017).
  73. C. Cutler and M. Vallisneri, “LISA detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms,” Phys. Rev. D 76, 104018 (2007).
  74. S. Hild et al., “Sensitivity studies for third-generation gravitational wave observatories,” Classical and Quantum Gravity 28, 094013 (2011).
  75. L. S. Finn, “Detection, measurement, and gravitational radiation,” Phys. Rev. D 46, 5236–5249 (1992).
  76. C. Cutler and E. E. Flanagan, “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform?” Phys. Rev. D 49, 2658–2697 (1994).
  77. S. Borhanian, “Gwbench: a novel fisher information package for gravitational-wave benchmarking,” Classical and Quantum Gravity 38, 175014 (2021).
  78. R. Abbott et al. (The LIGO Scientific Collaboration, The Virgo Collaboration, The KAGRA Collaboration), “The population of merging compact binaries inferred using gravitational waves through GWTC-3,”  arXiv:2111.03634 [astro-ph.HE] .
  79. J. Calderón Bustillo, P. Laguna,  and D. Shoemaker, “Detectability of gravitational waves from binary black holes: Impact of precession and higher modes,” Phys. Rev. D 95, 104038 (2017).
  80. X. Zhao, C. Zhang, K. Lin, T. Liu, R. Niu, B. Wang, S. Zhang, X. Zhang, W. Zhao, T. Zhu,  and A. Wang, “Gravitational waveforms and radiation powers of the triple system PSR J0337+1715J03371715\mathrm{J}0337+1715J0337 + 1715 in modified theories of gravity,” Phys. Rev. D 100, 083012 (2019).
  81. K. Yagi, L. C. Stein, N. Yunes,  and T. Tanaka, “Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity,” Phys. Rev. D 85, 064022 (2012).
  82. K. Yagi, L. C. Stein, N. Yunes,  and T. Tanaka, “Erratum: Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity [Phys. Rev. D 85, 064022 (2012)],” Phys. Rev. D 93, 029902(E) (2016).
Citations (4)

Summary

We haven't generated a summary for this paper yet.