Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A modified EM method and its fast implementation for multi-term Riemann-Liouville stochastic fractional differential equations (2205.03607v1)

Published 7 May 2022 in math.NA and cs.NA

Abstract: In this paper, a modified Euler-Maruyama (EM) method is constructed for a kind of multi-term Riemann-Liouville stochastic fractional differential equations and the strong convergence order min{1-{\alpha}_m, 0.5} of the proposed method is proved with Riemann-Liouville fractional derivatives' orders 0<{\alpha}_1<{\alpha}_2<...<{\alpha}_m <1. Then, based on the sum-of-exponentials approximation, a fast implementation of the modified EM method which is called a fast EM method is derived to greatly improve the computational efficiency. Finally, some numerical examples are carried out to support the theoretical results and show the powerful computational performance of the fast EM method.

Summary

We haven't generated a summary for this paper yet.