Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Cooperate with Completely Unknown Teammates (2205.03289v1)

Published 6 May 2022 in cs.MA

Abstract: A key goal of ad hoc teamwork is to develop a learning agent that cooperates with unknown teams, without resorting to any pre-coordination protocol. Despite a vast number of ad hoc teamwork algorithms in the literature, most of them cannot address the problem of learning to cooperate with a completely unknown team, unless it learns from scratch. This article presents a novel approach that uses transfer learning alongside the state-of-the-art PLASTIC-Policy to adapt to completely unknown teammates quickly. We test our solution within the Half Field Offense simulator with five different teammates. The teammates were designed independently by developers from different countries and at different times. Our empirical evaluation shows that it is advantageous for an ad hoc agent to leverage its past knowledge when adapting to a new team instead of learning how to cooperate with it from scratch.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alexandre Neves (1 paper)
  2. Alberto Sardinha (16 papers)

Summary

We haven't generated a summary for this paper yet.