Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Channel Learning for Intelligent Reflecting Surfaces With Fewer Pilot Signals (2205.03196v1)

Published 6 May 2022 in eess.SP, cs.IT, cs.LG, and math.IT

Abstract: Channel estimation is a critical task in intelligent reflecting surface (IRS)-assisted wireless systems due to the uncertainties imposed by environment dynamics and rapid changes in the IRS configuration. To deal with these uncertainties, deep learning (DL) approaches have been proposed. Previous works consider centralized learning (CL) approach for model training, which entails the collection of the whole training dataset from the users at the base station (BS), hence introducing huge transmission overhead for data collection. To address this challenge, this paper proposes a federated learning (FL) framework to jointly estimate both direct and cascaded channels in IRS-assisted wireless systems. We design a single convolutional neural network trained on the local datasets of the users without sending them to the BS. We show that the proposed FL-based channel estimation approach requires approximately 60% fewer pilot signals and it exhibits 12 times lower transmission overhead than CL, while maintaining satisfactory performance close to CL. In addition, it provides lower estimation error than the state-of-the-art DL-based schemes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.