Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GANs as Gradient Flows that Converge (2205.02910v2)

Published 5 May 2022 in cs.LG and math.OC

Abstract: This paper approaches the unsupervised learning problem by gradient descent in the space of probability density functions. A main result shows that along the gradient flow induced by a distribution-dependent ordinary differential equation (ODE), the unknown data distribution emerges as the long-time limit. That is, one can uncover the data distribution by simulating the distribution-dependent ODE. Intriguingly, the simulation of the ODE is shown equivalent to the training of generative adversarial networks (GANs). This equivalence provides a new "cooperative" view of GANs and, more importantly, sheds new light on the divergence of GANs. In particular, it reveals that the GAN algorithm implicitly minimizes the mean squared error (MSE) between two sets of samples, and this MSE fitting alone can cause GANs to diverge. To construct a solution to the distribution-dependent ODE, we first show that the associated nonlinear Fokker-Planck equation has a unique weak solution, by the Crandall-Liggett theorem for differential equations in Banach spaces. Based on this solution to the Fokker-Planck equation, we construct a unique solution to the ODE, using Trevisan's superposition principle. The convergence of the induced gradient flow to the data distribution is obtained by analyzing the Fokker-Planck equation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.