Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WDV: A Broad Data Verbalisation Dataset Built from Wikidata (2205.02627v1)

Published 5 May 2022 in cs.CL

Abstract: Data verbalisation is a task of great importance in the current field of natural language processing, as there is great benefit in the transformation of our abundant structured and semi-structured data into human-readable formats. Verbalising Knowledge Graph (KG) data focuses on converting interconnected triple-based claims, formed of subject, predicate, and object, into text. Although KG verbalisation datasets exist for some KGs, there are still gaps in their fitness for use in many scenarios. This is especially true for Wikidata, where available datasets either loosely couple claim sets with textual information or heavily focus on predicates around biographies, cities, and countries. To address these gaps, we propose WDV, a large KG claim verbalisation dataset built from Wikidata, with a tight coupling between triples and text, covering a wide variety of entities and predicates. We also evaluate the quality of our verbalisations through a reusable workflow for measuring human-centred fluency and adequacy scores. Our data and code are openly available in the hopes of furthering research towards KG verbalisation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.