Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spot-adaptive Knowledge Distillation (2205.02399v1)

Published 5 May 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Knowledge distillation (KD) has become a well established paradigm for compressing deep neural networks. The typical way of conducting knowledge distillation is to train the student network under the supervision of the teacher network to harness the knowledge at one or multiple spots (i.e., layers) in the teacher network. The distillation spots, once specified, will not change for all the training samples, throughout the whole distillation process. In this work, we argue that distillation spots should be adaptive to training samples and distillation epochs. We thus propose a new distillation strategy, termed spot-adaptive KD (SAKD), to adaptively determine the distillation spots in the teacher network per sample, at every training iteration during the whole distillation period. As SAKD actually focuses on "where to distill" instead of "what to distill" that is widely investigated by most existing works, it can be seamlessly integrated into existing distillation methods to further improve their performance. Extensive experiments with 10 state-of-the-art distillers are conducted to demonstrate the effectiveness of SAKD for improving their distillation performance, under both homogeneous and heterogeneous distillation settings. Code is available at https://github.com/zju-vipa/spot-adaptive-pytorch

Citations (63)

Summary

We haven't generated a summary for this paper yet.