Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VWA: Hardware Efficient Vectorwise Accelerator for Convolutional Neural Network (2205.02270v1)

Published 2 May 2022 in cs.AR

Abstract: Hardware accelerators for convolution neural networks (CNNs) enable real-time applications of artificial intelligence technology. However, most of the existing designs suffer from low hardware utilization or high area cost due to complex dataflow. This paper proposes a hardware efficient vectorwise CNN accelerator that adopts a 3$\times$3 filter optimized systolic array using 1-D broadcast dataflow to generate partial sum. This enables easy reconfiguration for different kinds of kernels with interleaved input or elementwise input dataflow. This simple and regular data flow results in low area cost while attains high hardware utilization. The presented design achieves 99\%, 97\%, 93.7\%, 94\% hardware utilization for VGG-16, ResNet-34, GoogLeNet, and Mobilenet, respectively. Hardware implementation with TSMC 40nm technology takes 266.9K NAND gate count and 191KB SRAM to support 168GOPS throughput and consumes only 154.98mW when running at 500MHz operating frequency, which has superior area and power efficiency than other designs.

Citations (25)

Summary

We haven't generated a summary for this paper yet.