Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multivariate Prediction Intervals for Random Forests (2205.02260v2)

Published 4 May 2022 in stat.ML and cs.LG

Abstract: Accurate uncertainty estimates can significantly improve the performance of iterative design of experiments, as in Sequential and Reinforcement learning. For many such problems in engineering and the physical sciences, the design task depends on multiple correlated model outputs as objectives and/or constraints. To better solve these problems, we propose a recalibrated bootstrap method to generate multivariate prediction intervals for bagged models and show that it is well-calibrated. We apply the recalibrated bootstrap to a simulated sequential learning problem with multiple objectives and show that it leads to a marked decrease in the number of iterations required to find a satisfactory candidate. This indicates that the recalibrated bootstrap could be a valuable tool for practitioners using machine learning to optimize systems with multiple competing targets.

Summary

We haven't generated a summary for this paper yet.