Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

Improve Discourse Dependency Parsing with Contextualized Representations (2205.02090v1)

Published 4 May 2022 in cs.CL and cs.AI

Abstract: Recent works show that discourse analysis benefits from modeling intra- and inter-sentential levels separately, where proper representations for text units of different granularities are desired to capture both the meaning of text units and their relations to the context. In this paper, we propose to take advantage of transformers to encode contextualized representations of units of different levels to dynamically capture the information required for discourse dependency analysis on intra- and inter-sentential levels. Motivated by the observation of writing patterns commonly shared across articles, we propose a novel method that treats discourse relation identification as a sequence labelling task, which takes advantage of structural information from the context of extracted discourse trees, and substantially outperforms traditional direct-classification methods. Experiments show that our model achieves state-of-the-art results on both English and Chinese datasets.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)