Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subexponentialiy of densities of infinitely divisible distributions (2205.02074v3)

Published 4 May 2022 in math.PR, math.ST, and stat.TH

Abstract: We show the equivalence of three properties for an infinitely divisible distribution: the subexponentiality of the density, the subexponentiality of the density of its L\'evy measure and the tail equivalence between the density and its L\'evy measure density, under monotonic-type assumptions on the L\'evy measure density. The key assumption is that tail of the L\'evy measure density is asymptotic to a non-increasing function or is eventually non-increasing. Our conditions are novel and cover a rather wide class of infinitely divisible distributions. Several significant properties for analyzing the subexponentiality of densities have been derived such as closure properties of [ convolution, convolution roots and asymptotic equivalence ] and the factorization property. Moreover, we illustrate that the results are applicable for developing the statistical inference of subexponential infinitely divisible distributions which are absolutely continuous.

Summary

We haven't generated a summary for this paper yet.