Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Second Order Path Variationals in Non-Stationary Online Learning (2205.01921v2)

Published 4 May 2022 in cs.LG, math.OC, and stat.ML

Abstract: We consider the problem of universal dynamic regret minimization under exp-concave and smooth losses. We show that appropriately designed Strongly Adaptive algorithms achieve a dynamic regret of $\tilde O(d2 n{1/5} C_n{2/5} \vee d2)$, where $n$ is the time horizon and $C_n$ a path variational based on second order differences of the comparator sequence. Such a path variational naturally encodes comparator sequences that are piecewise linear -- a powerful family that tracks a variety of non-stationarity patterns in practice (Kim et al, 2009). The aforementioned dynamic regret rate is shown to be optimal modulo dimension dependencies and poly-logarithmic factors of $n$. Our proof techniques rely on analysing the KKT conditions of the offline oracle and requires several non-trivial generalizations of the ideas in Baby and Wang, 2021, where the latter work only leads to a slower dynamic regret rate of $\tilde O(d{2.5}n{1/3}C_n{2/3} \vee d{2.5})$ for the current problem.

Citations (3)

Summary

We haven't generated a summary for this paper yet.