Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of prediction error with known covariate shift (2205.01849v2)

Published 4 May 2022 in stat.ME

Abstract: In supervised learning, the estimation of prediction error on unlabeled test data is an important task. Existing methods are usually built on the assumption that the training and test data are sampled from the same distribution, which is often violated in practice. As a result, traditional estimators like cross-validation (CV) will be biased and this may result in poor model selection. In this paper, we assume that we have a test dataset in which the feature values are available but not the outcome labels, and focus on a particular form of distributional shift called "covariate shift". We propose an alternative method based on parametric bootstrap of the target of conditional error. Empirically, our method outperforms CV for both simulation and real data example across different modeling tasks.

Summary

We haven't generated a summary for this paper yet.