Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Review on Pushing the Limits of Baseline Recommendation Systems with the integration of Opinion Mining & Information Retrieval Techniques (2205.01802v1)

Published 3 May 2022 in cs.IR, cs.AI, and cs.SI

Abstract: Recommendations Systems allow users to identify trending items among a community while being timely and relevant to the user's expectations. When the purpose of various Recommendation Systems differs, the required type of recommendations also differs for each use case. While one Recommendation System may focus on recommending popular items, another may focus on recommending items that are comparable to the user's interests. Content-based filtering, user-to-user & item-to-item Collaborative filtering, and more recently; Deep Learning methods have been brought forward by the researchers to achieve better quality recommendations. Even though each of these methods has proven to perform well individually, there have been attempts to push the boundaries of their limitations. Following a wide range of methods, researchers have tried to expand on the capabilities of standard recommendation systems to provide the most effective recommendations to users while being more profitable from a business's perspective. This has been achieved by taking a hybrid approach when building models and architectures for Recommendation Systems. This paper is a review of the novel models & architectures of hybrid Recommendation Systems. The author identifies possibilities of expanding the capabilities of baseline models & the advantages and drawbacks of each model with selected use cases in this review.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)

Summary

We haven't generated a summary for this paper yet.