Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Learning of Interpretable Models with Quantified Uncertainty (2205.01626v1)

Published 12 Apr 2022 in cs.NE and cs.LG

Abstract: Interpretability and uncertainty quantification in machine learning can provide justification for decisions, promote scientific discovery and lead to a better understanding of model behavior. Symbolic regression provides inherently interpretable machine learning, but relatively little work has focused on the use of symbolic regression on noisy data and the accompanying necessity to quantify uncertainty. A new Bayesian framework for genetic-programming-based symbolic regression (GPSR) is introduced that uses model evidence (i.e., marginal likelihood) to formulate replacement probability during the selection phase of evolution. Model parameter uncertainty is automatically quantified, enabling probabilistic predictions with each equation produced by the GPSR algorithm. Model evidence is also quantified in this process, and its use is shown to increase interpretability, improve robustness to noise, and reduce overfitting when compared to a conventional GPSR implementation on both numerical and physical experiments.

Citations (8)

Summary

We haven't generated a summary for this paper yet.