Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Outdoor Monocular Depth Estimation: A Research Review (2205.01399v1)

Published 3 May 2022 in cs.CV

Abstract: Depth estimation is an important task, applied in various methods and applications of computer vision. While the traditional methods of estimating depth are based on depth cues and require specific equipment such as stereo cameras and configuring input according to the approach being used, the focus at the current time is on a single source, or monocular, depth estimation. The recent developments in Convolution Neural Networks along with the integration of classical methods in these deep learning approaches have led to a lot of advancements in the depth estimation problem. The problem of outdoor depth estimation, or depth estimation in wild, is a very scarcely researched field of study. In this paper, we give an overview of the available datasets, depth estimation methods, research work, trends, challenges, and opportunities that exist for open research. To our knowledge, no openly available survey work provides a comprehensive collection of outdoor depth estimation techniques and research scope, making our work an essential contribution for people looking to enter this field of study.

Citations (11)

Summary

We haven't generated a summary for this paper yet.