Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep API Learning Revisited (2205.01254v1)

Published 3 May 2022 in cs.SE

Abstract: Understanding the correct API usage sequences is one of the most important tasks for programmers when they work with unfamiliar libraries. However, programmers often encounter obstacles to finding the appropriate information due to either poor quality of API documentation or ineffective query-based searching strategy. To help solve this issue, researchers have proposed various methods to suggest the sequence of APIs given natural language queries representing the information needs from programmers. Among such efforts, Gu et al. adopted a deep learning method, in particular an RNN Encoder-Decoder architecture, to perform this task and obtained promising results on common APIs in Java. In this work, we aim to reproduce their results and apply the same methods for APIs in Python. Additionally, we compare the performance with a more recent Transformer-based method, i.e., CodeBERT, for the same task. Our experiment reveals a clear drop in performance measures when careful data cleaning is performed. Owing to the pretraining from a large number of source code files and effective encoding technique, CodeBERT outperforms the method by Gu et al., to a large extent.

Citations (9)

Summary

We haven't generated a summary for this paper yet.