Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Framework For Constructing Locally Self-Normalized Multiple-Change-Point Tests (2205.00304v1)

Published 30 Apr 2022 in stat.ME

Abstract: We propose a general framework to construct self-normalized multiple-change-point tests with time series data. The only building block is a user-specified one-change-point detecting statistic, which covers a wide class of popular methods, including cumulative sum process, outlier-robust rank statistics and order statistics. Neither robust and consistent estimation of nuisance parameters, selection of bandwidth parameters, nor pre-specification of the number of change points is required. The finite-sample performance shows that our proposal is size-accurate, robust against misspecification of the alternative hypothesis, and more powerful than existing methods. Case studies of NASDAQ option volume and Shanghai-Hong Kong Stock Connect turnover are provided.

Summary

We haven't generated a summary for this paper yet.