Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elucidating Meta-Structures of Noisy Labels in Semantic Segmentation by Deep Neural Networks (2205.00160v3)

Published 30 Apr 2022 in cs.CV

Abstract: Supervised training of deep neural networks (DNNs) by noisy labels has been studied extensively in image classification but much less in image segmentation. Our understanding of the learning behavior of DNNs trained by noisy segmentation labels remains limited. We address this deficiency in both binary segmentation of biological microscopy images and multi-class segmentation of natural images. We classify segmentation labels according to their noise transition matrices (NTMs) and compare performance of DNNs trained by different types of labels. When we randomly sample a small fraction (e.g., 10%) or flip a large fraction (e.g., 90%) of the ground-truth labels to train DNNs, their segmentation performance remains largely unchanged. This indicates that DNNs learn structures hidden in labels rather than pixel-level labels per se in their supervised training for semantic segmentation. We call these hidden structures meta-structures. When labels with different perturbations to the meta-structures are used to train DNNs, their performance in feature extraction and segmentation degrades consistently. In contrast, addition of meta-structure information substantially improves performance of an unsupervised model in binary semantic segmentation. We formulate meta-structures mathematically as spatial density distributions. We show theoretically and experimentally how this formulation explains key observed learning behavior of DNNs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.