Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SciEv: Finding Scientific Evidence Papers for Scientific News (2205.00126v1)

Published 30 Apr 2022 in cs.IR and cs.AI

Abstract: In the past decade, many scientific news media that report scientific breakthroughs and discoveries emerged, bringing science and technology closer to the general public. However, not all scientific news article cites proper sources, such as original scientific papers. A portion of scientific news articles contain misinterpreted, exaggerated, or distorted information that deviates from facts asserted in the original papers. Manually identifying proper citations is laborious and costly. Therefore, it is necessary to automatically search for pertinent scientific papers that could be used as evidence for a given piece of scientific news. We propose a system called SciEv that searches for scientific evidence papers given a scientific news article. The system employs a 2-stage query paradigm with the first stage retrieving candidate papers and the second stage reranking them. The key feature of SciEv is it uses domain knowledge entities (DKEs) to find candidates in the first stage, which proved to be more effective than regular keyphrases. In the reranking stage, we explore different document representations for news articles and candidate papers. To evaluate our system, we compiled a pilot dataset consisting of 100 manually curated (news,paper) pairs from ScienceAlert and similar websites. To our best knowledge, this is the first dataset of this kind. Our experiments indicate that the transformer model performs the best for DKE extraction. The system achieves a P@1=50%, P@5=71%, and P@10=74% when it uses a TFIDF-based text representation. The transformer-based re-ranker achieves a comparable performance but costs twice as much time. We will collect more data and test the system for user experience.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Md Reshad Ul Hoque (1 paper)
  2. Jiang Li (48 papers)
  3. Jian Wu (314 papers)
Citations (2)