Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fast Algorithm for Selective Signal Extrapolation with Arbitrary Basis Functions (2204.14194v1)

Published 27 Apr 2022 in eess.IV

Abstract: Signal extrapolation is an important task in digital signal processing for extending known signals into unknown areas. The Selective Extrapolation is a very effective algorithm to achieve this. Thereby, the extrapolation is obtained by generating a model of the signal to be extrapolated as weighted superposition of basis functions. Unfortunately, this algorithm is computationally very expensive and, up to now, efficient implementations exist only for basis function sets that emanate from discrete transforms. Within the scope of this contribution, a novel efficient solution for Selective Extrapolation is presented for utilization with arbitrary basis functions. The proposed algorithm mathematically behaves identically to the original Selective Extrapolation, but is several decades faster. Furthermore, it is able to outperform existent fast transform domain algorithms which are limited to basis function sets that belong to the corresponding transform. With that, the novel algorithm allows for an efficient use of arbitrary basis functions, even if they are only numerically defined.

Citations (9)

Summary

We haven't generated a summary for this paper yet.