Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human's Role in-the-Loop (2204.14192v1)

Published 27 Apr 2022 in cs.DB, cs.HC, and cs.LG

Abstract: Data integration has been recently challenged by the need to handle large volumes of data, arriving at high velocity from a variety of sources, which demonstrate varying levels of veracity. This challenging setting, often referred to as big data, renders many of the existing techniques, especially those that are human-intensive, obsolete. Big data also produces technological advancements such as Internet of things, cloud computing, and deep learning, and accordingly, provides a new, exciting, and challenging research agenda. Given the availability of data and the improvement of machine learning techniques, this blog discusses the respective roles of humans and machines in achieving cognitive tasks in matching, aiming to determine whether traditional roles of humans and machines are subject to change. Such investigation, we believe, will pave a way to better utilize both human and machine resources in new and innovative manners. We shall discuss two possible modes of change, namely humans out and humans in. Humans out aim at exploring out-of-the-box latent matching reasoning using machine learning algorithms when attempting to overpower human matcher performance. Pursuing out-of-the-box thinking, machine and deep learning can be involved in matching. Humans in explores how to better involve humans in the matching loop by assigning human matchers with a symmetric role to algorithmic matcher in the matching process.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Avigdor Gal (22 papers)
  2. Roee Shraga (20 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.