Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QRelScore: Better Evaluating Generated Questions with Deeper Understanding of Context-aware Relevance (2204.13921v1)

Published 29 Apr 2022 in cs.CL

Abstract: Existing metrics for assessing question generation not only require costly human reference but also fail to take into account the input context of generation, rendering the lack of deep understanding of the relevance between the generated questions and input contexts. As a result, they may wrongly penalize a legitimate and reasonable candidate question when it (i) involves complicated reasoning with the context or (ii) can be grounded by multiple evidences in the context. In this paper, we propose $\textbf{QRelScore}$, a context-aware $\underline{\textbf{Rel}}$evance evaluation metric for $\underline{\textbf{Q}}$uestion Generation. Based on off-the-shelf LLMs such as BERT and GPT2, QRelScore employs both word-level hierarchical matching and sentence-level prompt-based generation to cope with the complicated reasoning and diverse generation from multiple evidences, respectively. Compared with existing metrics, our experiments demonstrate that QRelScore is able to achieve a higher correlation with human judgments while being much more robust to adversarial samples.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiaoqiang Wang (53 papers)
  2. Bang Liu (93 papers)
  3. Siliang Tang (116 papers)
  4. Lingfei Wu (135 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.