Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological Data Analysis for Multivariate Time Series Data (2204.13799v1)

Published 28 Apr 2022 in stat.ME and q-bio.NC

Abstract: Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach which can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH) which can extract topological properties from data at various scales. Our aim in this article is to introduce TDA concepts to a statistical audience and provide an approach to analyze multivariate time series data. The application focus will be on multivariate brain signals and brain connectivity networks. Finally, the paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network as well as the casting of TDA in the context of mixed effects models to capture variations in the topological properties of data collected from multiple subjects

Citations (14)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com