Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GCN-FFNN: A Two-Stream Deep Model for Learning Solution to Partial Differential Equations (2204.13744v1)

Published 28 Apr 2022 in cs.LG, cs.NA, math.NA, and physics.comp-ph

Abstract: This paper introduces a novel two-stream deep model based on graph convolutional network (GCN) architecture and feed-forward neural networks (FFNN) for learning the solution of nonlinear partial differential equations (PDEs). The model aims at incorporating both graph and grid input representations using two streams corresponding to GCN and FFNN models, respectively. Each stream layer receives and processes its own input representation. As opposed to FFNN which receives a grid-like structure, the GCN stream layer operates on graph input data where the neighborhood information is incorporated through the adjacency matrix of the graph. In this way, the proposed GCN-FFNN model learns from two types of input representations, i.e. grid and graph data, obtained via the discretization of the PDE domain. The GCN-FFNN model is trained in two phases. In the first phase, the model parameters of each stream are trained separately. Both streams employ the same error function to adjust their parameters by enforcing the models to satisfy the given PDE as well as its initial and boundary conditions on grid or graph collocation (training) data. In the second phase, the learned parameters of two-stream layers are frozen and their learned representation solutions are fed to fully connected layers whose parameters are learned using the previously used error function. The learned GCN-FFNN model is tested on test data located both inside and outside the PDE domain. The obtained numerical results demonstrate the applicability and efficiency of the proposed GCN-FFNN model over individual GCN and FFNN models on 1D-Burgers, 1D-Schr\"odinger, 2D-Burgers and 2D-Schr\"odinger equations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.