Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On weak convergence of quasi-infinitely divisible laws (2204.13667v1)

Published 28 Apr 2022 in math.PR

Abstract: We study a new class of so-called quasi-infinitely divisible laws, which is a wide natural extension of the well known class of infinitely divisible laws through the L\'evy--Khinchine type representations. We are interested in criteria of weak convergence within this class. Under rather natural assumptions, we state assertions, which connect a weak convergence of quasi-infinitely divisible distribution functions with one special type of convergence of their L\'evy--Khinchine spectral functions. The latter convergence is not equivalent to the weak convergence. So we complement known results by Lindner, Pan, and Sato (2018) in this field.

Summary

We haven't generated a summary for this paper yet.