Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithmic QUBO Formulations for k-SAT and Hamiltonian Cycles (2204.13539v1)

Published 28 Apr 2022 in cs.DS

Abstract: Quadratic unconstrained binary optimization (QUBO) can be seen as a generic language for optimization problems. QUBOs attract particular attention since they can be solved with quantum hardware, like quantum annealers or quantum gate computers running QAOA. In this paper, we present two novel QUBO formulations for $k$-SAT and Hamiltonian Cycles that scale significantly better than existing approaches. For $k$-SAT we reduce the growth of the QUBO matrix from $O(k)$ to $O(log(k))$. For Hamiltonian Cycles the matrix no longer grows quadratically in the number of nodes, as currently, but linearly in the number of edges and logarithmically in the number of nodes. We present these two formulations not as mathematical expressions, as most QUBO formulations are, but as meta-algorithms that facilitate the design of more complex QUBO formulations and allow easy reuse in larger and more complex QUBO formulations.

Citations (14)

Summary

We haven't generated a summary for this paper yet.