Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controllable Image Captioning (2204.13324v4)

Published 28 Apr 2022 in cs.CV

Abstract: State-of-the-art image captioners can generate accurate sentences to describe images in a sequence to sequence manner without considering the controllability and interpretability. This, however, is far from making image captioning widely used as an image can be interpreted in infinite ways depending on the target and the context at hand. Achieving controllability is important especially when the image captioner is used by different people with different way of interpreting the images. In this paper, we introduce a novel framework for image captioning which can generate diverse descriptions by capturing the co-dependence between Part-Of-Speech tags and semantics. Our model decouples direct dependence between successive variables. In this way, it allows the decoder to exhaustively search through the latent Part-Of-Speech choices, while keeping decoding speed proportional to the size of the POS vocabulary. Given a control signal in the form of a sequence of Part-Of-Speech tags, we propose a method to generate captions through a Transformer network, which predicts words based on the input Part-Of-Speech tag sequences. Experiments on publicly available datasets show that our model significantly outperforms state-of-the-art methods on generating diverse image captions with high qualities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Luka Maxwell (1 paper)