Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring How Anomalous Model Input and Output Alerts Affect Decision-Making in Healthcare (2204.13194v1)

Published 27 Apr 2022 in cs.HC, cs.AI, and cs.LG

Abstract: An important goal in the field of human-AI interaction is to help users more appropriately trust AI systems' decisions. A situation in which the user may particularly benefit from more appropriate trust is when the AI receives anomalous input or provides anomalous output. To the best of our knowledge, this is the first work towards understanding how anomaly alerts may contribute to appropriate trust of AI. In a formative mixed-methods study with 4 radiologists and 4 other physicians, we explore how AI alerts for anomalous input, very high and low confidence, and anomalous saliency-map explanations affect users' experience with mockups of an AI clinical decision support system (CDSS) for evaluating chest x-rays for pneumonia. We find evidence suggesting that the four anomaly alerts are desired by non-radiologists, and the high-confidence alerts are desired by both radiologists and non-radiologists. In a follow-up user study, we investigate how high- and low-confidence alerts affect the accuracy and thus appropriate trust of 33 radiologists working with AI CDSS mockups. We observe that these alerts do not improve users' accuracy or experience and discuss potential reasons why.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Marissa Radensky (9 papers)
  2. Dustin Burson (1 paper)
  3. Rajya Bhaiya (1 paper)
  4. Daniel S. Weld (55 papers)

Summary

We haven't generated a summary for this paper yet.