Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Relationship Between Explanations, Fairness Perceptions, and Decisions (2204.13156v3)

Published 27 Apr 2022 in cs.HC and cs.AI

Abstract: It is known that recommendations of AI-based systems can be incorrect or unfair. Hence, it is often proposed that a human be the final decision-maker. Prior work has argued that explanations are an essential pathway to help human decision-makers enhance decision quality and mitigate bias, i.e., facilitate human-AI complementarity. For these benefits to materialize, explanations should enable humans to appropriately rely on AI recommendations and override the algorithmic recommendation when necessary to increase distributive fairness of decisions. The literature, however, does not provide conclusive empirical evidence as to whether explanations enable such complementarity in practice. In this work, we (a) provide a conceptual framework to articulate the relationships between explanations, fairness perceptions, reliance, and distributive fairness, (b) apply it to understand (seemingly) contradictory research findings at the intersection of explanations and fairness, and (c) derive cohesive implications for the formulation of research questions and the design of experiments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jakob Schoeffer (13 papers)
  2. Maria De-Arteaga (36 papers)
  3. Niklas Kuehl (8 papers)
Citations (6)