Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Masked Spectrogram Prediction For Self-Supervised Audio Pre-Training (2204.12768v1)

Published 27 Apr 2022 in cs.SD and eess.AS

Abstract: Transformer-based models attain excellent results and generalize well when trained on sufficient amounts of data. However, constrained by the limited data available in the audio domain, most transformer-based models for audio tasks are finetuned from pre-trained models in other domains (e.g. image), which has a notable gap with the audio domain. Other methods explore the self-supervised learning approaches directly in the audio domain but currently do not perform well in the downstream tasks. In this paper, we present a novel self-supervised learning method for transformer-based audio models, called masked spectrogram prediction (MaskSpec), to learn powerful audio representations from unlabeled audio data (AudioSet used in this paper). Our method masks random patches of the input spectrogram and reconstructs the masked regions with an encoder-decoder architecture. Without using extra model weights or supervision, experimental results on multiple downstream datasets demonstrate MaskSpec achieves a significant performance gain against the supervised methods and outperforms the previous pre-trained models. In particular, our best model reaches the performance of 0.471 (mAP) on AudioSet, 0.854 (mAP) on OpenMIC2018, 0.982 (accuracy) on ESC-50, 0.976 (accuracy) on SCV2, and 0.823 (accuracy) on DCASE2019 Task1A respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dading Chong (19 papers)
  2. Helin Wang (35 papers)
  3. Peilin Zhou (34 papers)
  4. Qingcheng Zeng (30 papers)
Citations (60)

Summary

We haven't generated a summary for this paper yet.